4728 Mechanics 1

1 i	$\begin{aligned} & \mathrm{v}=4.2+9.8 \times 1.5 \\ & \mathrm{v}=18.9 \mathrm{~ms}^{-1} . \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{array}$	$\begin{aligned} & \text { Uses } v=u+g t \\ & 18.9(15) \text { from } g=9.81 \end{aligned}$
ii	$\begin{aligned} & \mathrm{s}=4.2 \times 1.5+9.8 \times 1.5^{2} / 2 \text { or } \\ & \\ & \mathrm{s}=17.325 \mathrm{~m} \quad 18.9^{2}=4.2^{2}+2 \times 9.8 \mathrm{~s} \end{aligned}$	M1 A1 [2]	Uses $s=u t+\mathrm{gt}^{2} / 2$ or $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{gs}$ Accept 17.3
iii	$\begin{aligned} & \hline \mathrm{v}^{2}=4.2+2 \times 9.8 \times(17.3(25)-5) \\ & \mathrm{v}=16.1 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{array}$	$\begin{aligned} & 18.9^{2}=\mathrm{u}^{2}+2 \times 9.8 \times 5 \\ & \mathrm{u}=16.1 \mathrm{~ms}^{-1} . \end{aligned}$ Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular directions Uses Pythagoras $\begin{aligned} \mathrm{R}^{2}= & (12+19 \cos 60)^{2} \\ & +(19 \sin 60)^{2} \end{aligned}$ $\mathrm{R}=27.1 \mathrm{~N}$ $\left\{R=\sqrt{ }\left((19+12 \cos 60)^{2}+(12 \sin 60)^{2}\right)=27.1\right\}$	M1 DM1 A1 A1 A1 [5]	Diagram for vector addition/subtraction Uses Cosine Rule $\begin{aligned} & R^{2}=12^{2}+19^{2}- \\ & 2 \times 12 \times 19 \cos 120 \\ & R=27.1 \end{aligned}$
ii	Trig on a valid triangle for correct angle $\tan \theta=(19 \sin 60) /(12+19 \cos 60)$ etc Angle is $37.4^{\circ}, 37.5^{\circ}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [3] } \end{gathered}$	Either Pythagoras or vector add/sub triangle $\sin \theta / 19=\sin 120 /(27.1)$ etc
$3 i a$ ib	$\begin{aligned} & +/-(9 \mathrm{~m}+2 \times 0.8) \quad\{+/-(3.5 \times 0.8-2 \times 0.8)\} \\ & +/(-3.5 \mathrm{~m}+3.5 \times 0.8) \quad\{+-(9 \mathrm{~m}+3.5 \mathrm{~m})\} \\ & +/-(9 \mathrm{~m}+2 \times 0.8)=+/-(-3.5 \mathrm{~m}+3.5 \times 0.8) \\ & \mathrm{m}=0.096 \mathrm{~kg} \end{aligned}$	B1 B1 M1 A1 [4] M1 A1ft [2]	Before mom, or mom change Q, OK with g After mom, or mom change P, OK with g Equates moms, or changes, accept with g Do not award if g used Using before \& after speeds of P or Q , no g ft $12.5 \times \mathrm{cv}(0.096)$
ii	$\begin{aligned} & (0.8+0.4) \mathrm{v} \text { or } 0.8 \mathrm{v}+0.4 \mathrm{v} \\ & 3.5 \times 0.8+0.4 \times 2.75=(0.8+0.4) \mathrm{v} \\ & \mathrm{v}=3.25 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	Using Q and R common speed after, no g $2.8+1.1=1.2 \mathrm{v}$
4ia	$0.3 g \cos 60$ and $0.3 g \sin 60$ $0.4 g \cos 60$ and $0.4 \mathrm{~g} \sin 60$ Calculates either relevant difference Perp $=0.1 \mathrm{gcos} 60$ and Para $=+/-0.1 \mathrm{gsin} 60$ $\begin{gathered} 0.1 \mathrm{~g} \sin 60=\mu 0.1 \mathrm{~g} \cos 60 \\ =1.73(=\sqrt{ } 3) \end{gathered}$	B1 B1 M1 A1 [4] M1 A1 [2]	Accept use of "m = 0.1 kg " for M1 and $0.1 \mathrm{~g} \cos 60$ (B1) 0.1gsin60 (B1) $\begin{aligned} & =0.49 \text { and }=0.849 \text { (accept } 0.85 \text { and } 0.84) \\ & F=\mu R, F>R>0 \\ & \text { From correct } R, F \text { values } \end{aligned}$

4 ii	$\begin{aligned} & 0.5 \mathrm{~g}-\mathrm{T}=0.5 \mathrm{a} \\ & \mathrm{~T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \\ & \mathrm{a}=1.09 \mathrm{~ms}^{-2} \\ & \mathrm{~T}=4.36 \mathrm{~N} \end{aligned}$	M1 A1 B1 B1 [4]	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0. But award M1 for T- $0.4 \mathrm{~g}=0.4 \times 1.09$ etc later Both equations correct
5 i	$\begin{array}{ll} 11=3+20 a & (a=0.4) \\ 8=3+(11-3) t / 20 & \\ t=12.5 & \end{array}$	$\begin{array}{\|c} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	Uses $\mathrm{v}=\mathrm{u}+\mathrm{at}$, no zero terms Their $\mathrm{a}>0$. $\mathrm{t} / 20=(8-3) /(11-3)$ is M1M1
ii	$\begin{aligned} & \mathrm{s}(\mathrm{~A}, 20)=8 \times 20(=160) \\ & \mathrm{s}(\mathrm{~B}, 20)=(3+11) \times 20 / 2= \\ & 3 \times 20+0.4 \times 20^{2} / 2(=140) \\ & 8 \mathrm{~T}=(3+11) \times 20 / 2+11 \times(\mathrm{T}-20) \\ & \text { or }(160-140)=11 \mathrm{t}-8 \mathrm{t} \\ & \mathrm{~T}=262 / 3 \end{aligned}$	B1 B1 M1 A1 A1 $[5]$	Or $s(A)=8 T$ or as stage of $s(B)=(3+11) \times 20 / 2+11 \times(T-20)$ 3 part equation balancing distances Accept 26.6 or 26.7
iii		$\begin{array}{\|c\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	Linear rising graph (for A) starting at B's start Non-linear rising graph for B below A's initially. Accept 2 straight lines as non-linear. Single valued graphs graphs intersect and continue
6 i	$\begin{aligned} & a=2 \times 0.006 t-0.18 \\ & a=0.012 t-0.18 \end{aligned}$	M1 A1 [2]	Differentiates v (not v / t) Award for unsimplified form, accept +c , not +k
ii	$\begin{aligned} & 0.012 \mathrm{t}-0.18=0 \\ & \mathrm{t}=15 \\ & 0.006 \times 15^{2}-0.18 \times 15+\mathrm{k}=0.65 \\ & \mathrm{k}=2 \end{aligned}$	M1* A1 D*M1 A1 A1 $\quad[5]$	Sets $\mathrm{a}=0$, and solves for t Substitutes $\mathrm{t}(\mathrm{v}(\mathrm{min})$) in $\mathrm{v}(\mathrm{t})$
iii	$\begin{aligned} & \mathrm{s}=0.006 \mathrm{t}^{3} / 3-0.18 \mathrm{t}^{2} / 2+2 \mathrm{t}(+\mathrm{c}) \\ & \left(\mathrm{s}=0.002 \mathrm{t}^{3}-0.09 \mathrm{t}^{2}+2 \mathrm{t}(+\mathrm{c})\right) \\ & \mathrm{t}=0, \mathrm{~s}=0 \text { hence } \mathrm{c}=0 \\ & \mathrm{~L}=0.002 \times 28.4^{3}-0.09 \times 28.4^{2}+2 \times 28.4 \\ & \mathrm{~L}=30.0 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{array}$	Integrates v (not multiplies by t). Award if +c omitted, accept kt Explicit, not implied (or uses limits 0, 28.4) Substitutes 28.4 or 14.2 in $\mathrm{s}(\mathrm{t})$, (and $\mathrm{k}=2$) Accept a r t 30(.0), accept +c

7 i	$\begin{aligned} & (\mathrm{Fr}=) 0.15 \times 600 \mathrm{gcos} 10 \\ & (\mathrm{Wt} \mathrm{cmpt}=) 600 \mathrm{gsin} 10 \\ & 600 \times 0.11=\mathrm{T}-0.15 \times 600 \mathrm{gcos} 10- \\ & (66=\mathrm{T}-868.6-1021) \\ & \mathrm{T}=1960 \mathrm{~N} \end{aligned}$	B1 B1 M1 A1 A1 [5]	Implied by $\mathrm{Fr}=0.15 \times 600 \mathrm{gcos} 10(=868.6 .$. N2L. T with at least 1 resolved forces and 600×0.11 1955.6..
ii a	$\begin{aligned} & \mathrm{a}(\text { up })=+/-(600 \mathrm{gsin} 10+.15 \times 600 \mathrm{gcos} 10) / 600 \\ & \mathrm{a}(\mathrm{up})=+/-3.15 \mathrm{~ms}^{-2} \quad \text { AG } \end{aligned}$	M1 [2]	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b		M1 A1 M1 M1 A1 B1 M1 A1 A1 [9]	Correct, need not be accurate Or $1.48=0+3.15 t$ Correct, need not be accurate $=0.254$ Needs $\mathrm{a}<3.15, \mathrm{~s}>10$. Or $\mathrm{V}^{2}=$ $2 \times 0.254 \times(10+0.349)[\mathrm{V}=2.29 . .], \mathrm{V}=0.254 \mathrm{t}$ Correct, need not be accurate Accept 9.49

